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Synthesis and reactivity of subvalent compounds�
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Abstract

The aromatic ring protons in imidazol-2-ylidenes (Arduengo carbenes) undergo rapid deuterium–hydrogen exchange in
DMSO-d6, CD3OD and D2O. © 2001 Published by Elsevier Science B.V.
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1. Introduction

Since the description of stable carbenes by Bertrand
[1] and Arduengo, [2] the exploration of their chemical
reactivity has become a major area of current main
group chemistry [1–3]. We have previously reported on
the structure and synthesis of stable diamino carbenes 1
[4], silylenes [5], germylenes [6] and phosphenium
cations [7] (Fig. 1) and are currently investigating the
reactivity of these species with small molecules like
oxygen, hydrogen and water.

In principle, N-heterocyclic carbenes like 1 and their
isoelectronic analogs 1Si, 1Ge or 1P should be powerful

deoxygenating agents [8] but their reactivity towards
oxygen donors seems to be kinetically slow. For exam-
ple, stable diamino carbenes were obtained by Ar-
duengo through the deprotonation of the respective
imidazolium salts with NaH in tetrahydrofuran, using
catalytic amounts of dimethyl sulfoxide [2a]. Under the
reaction conditions (r.t.), DMSO is inert towards the
diamino carbenes [2a]. By way of contrast, non-stabi-
lized carbenes are known to react readily with DMSO
to give the respective carbonyl compounds (ureas) and
dimethyl sulfide [9].

2. Results and discussion

We were interested in the synthetic potential of stable
carbenes as deoxygenating agents [8] and have exam-
ined the reactivity of 1 towards DMSO with tempera-
ture-dependent 1H-NMR spectroscopy in the
temperature range of 25–145°C. While no oxygen
transfer could be observed over the entire temperature
range, we noticed that the NMR signal of the carbene
ring protons vanished upon dissolution of 1 in DMSO-
d6.

The assumption, that 1 reacts rapidly with DMSO-d6

to give selective H/D exchange of the ring protons was
verified by the isolation and characterization of 1,3-di-
tert -butyl-4,5-bis(deutero)- imidazol-2-ylidene (1 -D2).
Pure 1-D2 can be isolated from the DMSO solution by

Fig. 1. Imidazol-2-ylidenes and isoelectronic silylenes, germylenes and
phosphenium cations.
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Table 1
Electronic energies and (in brackets) zero point vibrational energies in kcal mol−1 for imidazol-2-ylidene 1H and the cations 2H–4H at different
levels of theory a

E (kcal mol−1) b

1H 2H 4H3H

−141232.77HF/6-31G*//HF/6-31G* −141053.22−141054.91 −141250.64
(56.39)(48.36) (57.69)(56.08)

−141860.28B3PW91/6-31G*//B3PW91/6-31G* −142064.16 −142051.21 −142129.42
(45.06) (52.26) (52.67) (53.81)

−141875.54 −142076.48B3PW91/cc-pVDZ//B3PW91/cc-pVDZ −142064.32 −142139.64
(44.87) (51.78) (52.15) (53.53)

−141961.87 −142160.11B3LYP/6-311+G(2d,p)//HF/6-31G* −142149.11 −142221.17

a R=H.
b Converted from Hartrees: 1 Hartree=627.5095 kcal mol−1.

extraction with hexanes or other hydrocarbons that are
imiscible with DMSO.

The degree of deuteration depends on the relative
amount of 1 and DMSO-d6. The position of the deu-
terium atoms is obvious from the 13C-NMR spectrum
of 1-D2 which shows the characteristic 1:1:1 deuterium
triplet (1J(C,D)=27.2 Hz) for the olefinic carbon
atoms at 114.9 ppm (3J(C,D) unresolved). The IR-spec-
trum of 1-D2 shows two strong, partially overlapping
IR bands at 2309 and 2318 cm−1, which correspond to
the anti-symmetric and symmetric C�D stretching fre-
quency combinations. The EI–MS spectrum shows the
expected mass and isotope pattern of the bis-deutera-
tion product (m/z=182, [M]+ .). The deuteration of 1
is reversible: dissolution of the deuterated carbene 1-D2

in DMSO leads to the reformation of 1.
The formation of 1-D2 from 1 suggests a reversible

protonation/deuteration of 1 via a s-complex 2
(Scheme 1). The formation of the s-complex 2 is coun-
ter-intuitive. Protonation of the highly basic carbene
carbon atom should be thermodynamically more favor-
able [10,11]. We have therefore investigated the relative

thermodynamic stability of the different protonation
products 2–4 through calculations of model com-
pounds (2H–4H) at the B3LYP/6-311+G(2d,p)//HF/
6-31G(d) level [12].

The structures 2H–4H are stationary points on the
hypersurface. The geometrical parameters of the calcu-
lated structures 1H–4H are listed in Table 2. The
sequence of relative stabilities (Table 1, kcal mol−1) is
4H (=0)\2H (+59.31)\3H (+70.7). This con-
firms, that the protonation of the carbene 1H at the
olefinic carbon (formation of 2H) is indeed thermody-
namically unfavorable versus the formation the imida-
zolium cation 4H. The observed H/D exchange reaction
would therefore be only kinetically favored with respect
to protonation of the carbene carbon atom.

The H/D exchange reaction bears a formal analogy
to the recently reported reaction of an imidazol-2-yli-
dene with CCl4 which leads to the formation of the
4,5-dichloro-imidazol-2-ylidene [2d]. At first sight, the
mechanism that was suggested for this reaction seems
to be capable of explaining the observed H/D exchange
reaction as well (Scheme 2). However, the mechanism

Scheme 1. Deuteration of 1. Energies are at the B3LYP/6-311+
G(2d,p)//HF/6-31G* level, T=0 K and are referenced to 4H=0.00.
Zero point energies were obtained at the B3PW91/cc-pVDZ level and
are unscaled.

Table 2
Bond distances (pm) and angles (°) for the carbene 1H and the
protonated carbenes 2H–4H at the HF/6-31G* level

1H [4]Cl [13]4H3H2H

131.3 130.3N1�C2 131.6 131.3 133.2(7)
131.3 147.0 154.1 131.3 133.5(7)C2�N3
138.2 127.3N3�C4 146.8 138.2 137.2(7)

C4�C5 134.0 148.4 133.0 134.0 135.9(7)
144.9138.2 137.7(7)C5�N1 138.2142.2

108.098.7 108.6(4)100.4107.9N1�C2�N3
C2�N3�C4 113.7 114.4 109.4 109.5 108.3(8)

105.8 108.5 105.8 106.5 107.1(5)N3�C4�C5
105.8 99.2 108.2C4�C5�N1 106.5 108.6(4)

C26Point-group Cs Cs C2 C2
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Scheme 2. H/D exchange of imidazol-2-ylidenes via imidazolium
cations.

C(CH3)3], 55.76 [s, C(CH3)3], 114.90 [t, CD�CD
1J(C,D)=27.2 Hz], 212.9 [s br, N2C :]. EI–MS (70 eV):
m/z (rel. int.%): 182 (21) [M]+, 126 (36), 111 (17), 83 (12),
71 (100), 70 (76), 57 (64). IR (hexanes, CaF2 cell, cm−1):
2309 s, 2318 s.
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